论文标题

基于线性套件的ABB占用

A higgledy-piggledy set of planes based on the ABB-representation of linear sets

论文作者

Denaux, Lins, D'haeseleer, Jozefien, Van de Voorde, Geertrui

论文摘要

在本文中,我们调查了某些$ \ mathbb {f} _q $ - 线性集的André/bruck-bose表示,包含在$ \ text {pg}(2,q^t)$的行中。我们表明,零散的$ \ mathbb {f} _q $ - 等级的$ 3 $ in $ \ text {pg}(1,q^3)$对应于特定的超纤维四边形,该$ \ mathbb {f} f} _q $ linear linarear linear linear clubs in $ \ \ text $ \ \ text $ - 在正常的有理曲线上;该设计扩展了围绕圆锥形的束缚的概念。最后,我们使用这些结果来构建$ \ text {pg}(5,q)$的最佳higgledy-piggledy套装。

In this paper, we investigate the André/Bruck-Bose representation of certain $\mathbb{F}_q$-linear sets contained in a line of $\text{PG}(2,q^t)$. We show that scattered $\mathbb{F}_q$-linear sets of rank $3$ in $\text{PG}(1,q^3)$ correspond to particular hyperbolic quadrics and that $\mathbb{F}_q$-linear clubs in $\text{PG}(1,q^t)$ are linked to subspaces of a certain $2$-design based on normal rational curves; this design extends the notion of a circumscribed bundle of conics. Finally, we use these results to construct optimal higgledy-piggledy sets of planes in $\text{PG}(5,q)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源