论文标题
矮人行星(136199)的潮汐锁定旋转从长期基于地面和空间光度法中发现
Tidally locked rotation of the dwarf planet (136199) Eris discovered from long-term ground based and space photometry
论文作者
论文摘要
矮行星中成员的旋转状态 - 跨性别区域中的卫星系统取决于形成条件和组件之间的潮汐相互作用,这些旋转特性是其进化的主要示踪剂。以前,许多作者声称,矮人行星埃里斯(Eris)的旋转期高度多样化,范围从几个小时到旋转(几乎)与轨道时期(15.8 d)的卫星(15.8 d)范围(15.8 d)。在这封信中,我们提供了ERIS的新光曲线数据,该数据以$ \ sim $ 1-2M级的地面望远镜以及苔丝和Gaia太空望远镜拍摄。苔丝数据无法提供明确定义的光曲线,但可以将光曲线变化限制为最大可能的光曲线振幅为$Δm$ $ $ \ leq $ 0.03 mag(1- $σ$),p $ \ leq $ \ leq $ 24小时。合并的地面数据和GAIA测量值都明确指向的光曲线周期等于轨道周期,p = 15.8 d,光曲线幅度为$δm$ $ $ $ \ $ 0.03,即MAG。假设发育不良具有碰撞起源,具有简单的潮汐进化模型的计算表明,发育不良症必须相对较大(质量比= 0.01--0.03)和大(半径$ r_s $ $ \ geq $ 300 km)才能减慢Eris对同步旋转的速度。这些模拟还表明 - 假设通常考虑用于跨性别物体的潮汐参数 - 发育不良的密度应为1.8-2.4 $ g cm^{ - 3} $,这是类似尺寸的Transneptunian对象的异常高值,在形成条件下构成了重要的约束。
The rotational states of the members in the dwarf planet - satellite systems in the transneptunian region are determined by the formation conditions and the tidal interaction between the components, and these rotational characteristics are the prime tracers of their evolution. Previously a number of authors claimed highly diverse values for the rotation period for the dwarf planet Eris, ranging from a few hours to a rotation (nearly) synchronous with the orbital period (15.8 d) of its satellite, Dysnomia. In this letter we present new light curve data of Eris, taken with $\sim$1-2m-class ground based telescopes, and with the TESS and Gaia space telescopes. TESS data could not provide a well-defined light curve period, but could constrain light curve variations to a maximum possible light curve amplitude of $Δm$ $\leq$ 0.03 mag (1-$σ$) for P $\leq$ 24 h periods. Both the combined ground-based data and the Gaia measurements unambiguously point to a light curve period equal to the orbital period of Dysnomia, P = 15.8 d, with a light curve amplitude of $Δm$ $\approx$ 0.03 mag, i.e. the rotation of Eris is tidally locked. Assuming that Dysnomia has a collisional origin, calculations with a simple tidal evolution model show that Dysnomia has to be relatively massive (mass ratio of q = 0.01--0.03) and large (radius of $R_s$ $\geq$ 300 km) to slow down Eris to synchronized rotation. These simulations also indicate that -- assuming tidal parameters usually considered for transneptunian objects -- the density of Dysnomia should be 1.8-2.4 $g cm^{-3}$, an exceptionally high value among similarly sized transneptunian objects, putting important constraints on the formation conditions.