论文标题

部分可观测时空混沌系统的无模型预测

A Simple and Efficient Lagrange Multiplier Based Mixed Finite Element for Gradient Damage

论文作者

Riesselmann, Johannes, Balzani, Daniel

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A novel finite element formulation for gradient-regularized damage models is presented which allows for the robust, efficient, and mesh-independent simulation of damage phenomena in engineering and biological materials. The paper presents a Lagrange multiplier based mixed finite element formulation for finite strains. Thereby, no numerical stabilization or penalty parameters are required. On the other hand, no additional degrees of freedom appear for the Lagrange multiplier which is achieved through a suitable FE-interpolation scheme allowing for static condensation. In contrast to competitive approaches from the literature with similar efficiency, the proposed formulation does not require cross-element information and thus, a straightforward implementation using standard element routine interfaces is enabled. Numerical tests show mesh-independent solutions, robustness of the solution procedure for states of severe damage and under cyclic loading conditions. It is demonstrated that the computing time of the gradient damage calculations exceeds the one of purely elastic computations only by an insignificant amount. Furthermore, an improved convergence behavior compared to alternative approaches is shown.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源