论文标题

使用有机液体闪烁体信号的卷积神经网络脉冲形状歧视

Pulse shape discrimination using a convolutional neural network for organic liquid scintillator signals

论文作者

Jung, K. Y., Han, B. Y., Jeon, E. J., Jeong, Y., Jo, H. S., Kim, J. Y., Kim, J. G., Kim, Y. D., Ko, Y. J., Lee, M. H., Lee, J., Moon, C. S., Oh, Y. M., Park, H. K., Seo, S. H., Seol, D. W., Siyeon, K., Sun, G. M., Yoon, Y. S., Yu, I.

论文摘要

开发了卷积神经网络(CNN)结构,以提高加多林载体有机液体闪烁探测器的脉冲形状歧视(PSD)功率,以减少NEOS-II数据的逆β衰减候选事件中的快速中子背景。事件的功率谱是使用时域原始波形的快速傅立叶变换构建的,并放入CNN中。在使用低能$β$和$α$事件训练后,CNN评估了早期数据集。与现有的常规PSD方法相比,CNN方法的结果超过1-10 MEV可见能量范围的信噪比平均超过20%,并且在低能区域中的改善更高。

A convolutional neural network (CNN) architecture is developed to improve the pulse shape discrimination (PSD) power of the gadolinium-loaded organic liquid scintillation detector to reduce the fast neutron background in the inverse beta decay candidate events of the NEOS-II data. A power spectrum of an event is constructed using a fast Fourier transform of the time domain raw waveforms and put into CNN. An early data set is evaluated by CNN after it is trained using low energy $β$ and $α$ events. The signal-to-background ratio averaged over 1-10 MeV visible energy range is enhanced by more than 20% in the result of the CNN method compared to that of an existing conventional PSD method, and the improvement is even higher in the low energy region.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源