论文标题

海马细分的反馈链网络

Feedback Chain Network For Hippocampus Segmentation

论文作者

Huang, Heyu, Cong, Runmin, Yang, Lianhe, Du, Ling, Wang, Cong, Kwong, Sam

论文摘要

海马在许多神经系统疾病的诊断和治疗中起着至关重要的作用。近年来,深度学习技术在医学图像细分领域取得了长足的进步,并且相关任务的执行不断刷新。在本文中,我们专注于海马细分任务,并提出了一个新型的层次反馈链网络。反馈链结构单元通过层次特征聚合链了解每个编码器层的更深入,更广泛的特征表示,并通过功能移交注意模块实现特征选择和反馈。然后,我们在特征编码器和解码器之间嵌入了一个全局金字塔注意力单元,以进一步修改编码器特征,包括用于实现相邻注意力相互作用的配对金字塔注意模块以及用于捕获远程知识的全局上下文建模模块。与现有的海马细分方法相比,所提出的方法可以在三个公开数据集中实现最新性能。

The hippocampus plays a vital role in the diagnosis and treatment of many neurological disorders. Recent years, deep learning technology has made great progress in the field of medical image segmentation, and the performance of related tasks has been constantly refreshed. In this paper, we focus on the hippocampus segmentation task and propose a novel hierarchical feedback chain network. The feedback chain structure unit learns deeper and wider feature representation of each encoder layer through the hierarchical feature aggregation feedback chains, and achieves feature selection and feedback through the feature handover attention module. Then, we embed a global pyramid attention unit between the feature encoder and the decoder to further modify the encoder features, including the pair-wise pyramid attention module for achieving adjacent attention interaction and the global context modeling module for capturing the long-range knowledge. The proposed approach achieves state-of-the-art performance on three publicly available datasets, compared with existing hippocampus segmentation approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源