论文标题

数据和功能增强的局部放大倍率

Local Magnification for Data and Feature Augmentation

论文作者

He, Kun, Liu, Chang, Lin, Stephen, Hopcroft, John E.

论文摘要

近年来,已经提出了许多数据增强技术来增加输入数据的多样性,并降低了深层神经网络过度拟合的风险。在这项工作中,我们提出了一种易于实现和无模型的数据增强方法,称为局部放大倍率(LOMA)。与其他对图像进行全局转换的几何数据增强方法不同,LOMA通过随机放大图像的局部区域来生成其他训练数据。这种局部放大倍率导致几何变化,从而显着扩大了增强范围,同时保持对象的可识别性。此外,我们将Loma和随机裁剪的概念扩展到特征空间,以增强特征图,从而进一步提高了分类准确性。实验表明,我们提出的Loma虽然很简单,但可以与标准数据增强结合使用,以显着提高图像分类和对象检测的性能。并与我们的功能增强技术(称为loma_if&fo)进一步结合,可以继续加强模型,并超过高级强度转换方法以增加数据增强。

In recent years, many data augmentation techniques have been proposed to increase the diversity of input data and reduce the risk of overfitting on deep neural networks. In this work, we propose an easy-to-implement and model-free data augmentation method called Local Magnification (LOMA). Different from other geometric data augmentation methods that perform global transformations on images, LOMA generates additional training data by randomly magnifying a local area of the image. This local magnification results in geometric changes that significantly broaden the range of augmentations while maintaining the recognizability of objects. Moreover, we extend the idea of LOMA and random cropping to the feature space to augment the feature map, which further boosts the classification accuracy considerably. Experiments show that our proposed LOMA, though straightforward, can be combined with standard data augmentation to significantly improve the performance on image classification and object detection. And further combination with our feature augmentation techniques, termed LOMA_IF&FO, can continue to strengthen the model and outperform advanced intensity transformation methods for data augmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源