论文标题
预期的嵌入维度,数值半群的类型和重量
The Expected Embedding Dimension, type and weight of a Numerical Semigroup
论文作者
论文摘要
我们研究了$ g $ $ g $的数值半群的统计特性,即无限。更具体地说,我们通过证明$ g $进入无穷大,回答了一个伊利亚豪的问题,属于$ g $的数值半群的比例,嵌入尺寸接近$ g/\ sqrt {5} $接近$ 1 $。我们证明了类似于$ g $的数值半群的类型和重量。
We study statistical properties of numerical semigroups of genus $g$ as $g$ goes to infinity. More specifically, we answer a question of Eliahou by showing that as $g$ goes to infinity, the proportion of numerical semigroups of genus $g$ with embedding dimension close to $g/\sqrt{5}$ approaches $1$. We prove similar results for the type and weight of a numerical semigroup of genus $g$.