论文标题
使用来自类似系统的数据的神经状态空间模型的元学习
Meta-Learning of Neural State-Space Models Using Data From Similar Systems
论文作者
论文摘要
深神经状态空间模型(SSM)为仅使用操作数据建模动态系统提供了强大的工具。通常,尽管可能存在来自现场已部署的类似系统的操作数据,但使用从实际考虑的实际系统中收集的数据进行了神经SSM的培训。在本文中,我们提出了使用模型不合时宜的元学习(MAML)来构建基于深层网络的SSM,这是通过利用来自类似系统的存档数据(用于离线的元式TRAIN)的组合以及来自实际系统的有限数据(用于快速在线适应)。我们使用一个数值示例证明,尽管很少有适应性步骤和有限的在线数据,但元学习可能会导致比监督或转移学习更准确的神经SSM模型。此外,我们表明,通过在修复州转变操作员的同时仔细分区和调整编码层,我们可以在降低在线适应复杂性的同时,实现与MAML相当的性能。
Deep neural state-space models (SSMs) provide a powerful tool for modeling dynamical systems solely using operational data. Typically, neural SSMs are trained using data collected from the actual system under consideration, despite the likely existence of operational data from similar systems which have previously been deployed in the field. In this paper, we propose the use of model-agnostic meta-learning (MAML) for constructing deep encoder network-based SSMs, by leveraging a combination of archived data from similar systems (used to meta-train offline) and limited data from the actual system (used for rapid online adaptation). We demonstrate using a numerical example that meta-learning can result in more accurate neural SSM models than supervised- or transfer-learning, despite few adaptation steps and limited online data. Additionally, we show that by carefully partitioning and adapting the encoder layers while fixing the state-transition operator, we can achieve comparable performance to MAML while reducing online adaptation complexity.