论文标题

神经2022竞赛:驾驶智能

NeurIPS 2022 Competition: Driving SMARTS

论文作者

Rasouli, Amir, Goebel, Randy, Taylor, Matthew E., Kotseruba, Iuliia, Alizadeh, Soheil, Yang, Tianpei, Alban, Montgomery, Shkurti, Florian, Zhuang, Yuzheng, Scibior, Adam, Rezaee, Kasra, Garg, Animesh, Meger, David, Luo, Jun, Paull, Liam, Zhang, Weinan, Wang, Xinyu, Chen, Xi

论文摘要

驾驶Smarts是一项常规竞争,旨在解决由现实世界自动驾驶(AD)中普遍存在的动态互动环境中的分布变化引起的问题。拟议的竞争支持方法论上多样化的解决方案,例如增强学习(RL)和离线学习方法,这些解决方案是通过自然主义广告数据和开源仿真平台智能培训的。两轨结构允许专注于分布移位的不同方面。轨道1对任何方法都开放,并将为具有不同背景的ML研究人员一个解决现实世界自动驾驶挑战的机会。轨道2专为严格的离线学习方法而设计。因此,可以在不同方法之间进行直接比较,以确定新的有前途的研究方向。提出的设置由1)使用现实世界数据和微模拟器生成的现实流量组成,以确保方案的保真度,2)框架适合解决问题的多种方法,以及3)基线方法。因此,它为对自动驾驶汽车部署的各个方面的原则调查提供了独特的机会。

Driving SMARTS is a regular competition designed to tackle problems caused by the distribution shift in dynamic interaction contexts that are prevalent in real-world autonomous driving (AD). The proposed competition supports methodologically diverse solutions, such as reinforcement learning (RL) and offline learning methods, trained on a combination of naturalistic AD data and open-source simulation platform SMARTS. The two-track structure allows focusing on different aspects of the distribution shift. Track 1 is open to any method and will give ML researchers with different backgrounds an opportunity to solve a real-world autonomous driving challenge. Track 2 is designed for strictly offline learning methods. Therefore, direct comparisons can be made between different methods with the aim to identify new promising research directions. The proposed setup consists of 1) realistic traffic generated using real-world data and micro simulators to ensure fidelity of the scenarios, 2) framework accommodating diverse methods for solving the problem, and 3) baseline method. As such it provides a unique opportunity for the principled investigation into various aspects of autonomous vehicle deployment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源