论文标题
在参数化的NURBS多捕捉几何形状上,非承款问题的订单模型减少
Reduced order modelling of nonaffine problems on parameterized NURBS multipatch geometries
论文作者
论文摘要
该贡献探讨了在参数化偏微分方程的背景下,降低基础方法和等化方法分析(IGA)的组合功能。 IGA的引入可以基于设计和分析的单个几何表示形式实现统一的仿真框架。还原性方法与IgA的耦合尤其是由于它们的几何设计和参数化几何形状解决方案的综合能力而动机。在大多数IGA应用中,几何形状由具有不同物理或几何参数的多个贴片建模。特别是,我们对以高维参数空间为特征的非承包问题感兴趣。我们考虑经验插值法(EIM)来恢复仿射参数依赖性并结合域分解以降低维度。我们将样条片贴在一个参数化设置中,其中对给定的一组几何参数进行了多次评估,并采用静态冷凝降低基元元素(SCRBE)方法。在相邻补丁之间的常见接口处,采用了静态冷凝程序,而在内部,降低的基础近似值可以有效地离线/在线分解。我们设置RB公式的完整模型基于NURB近似,而降低的基础构造取决于诸如贪婪算法或正交分解(POD)等技术。我们在具有多维几何参数化的三维几何形状上使用说明性模型问题展示了开发的过程。
This contribution explores the combined capabilities of reduced basis methods and IsoGeometric Analysis (IGA) in the context of parameterized partial differential equations. The introduction of IGA enables a unified simulation framework based on a single geometry representation for both design and analysis. The coupling of reduced basis methods with IGA has been motivated in particular by their combined capabilities for geometric design and solution of parameterized geometries. In most IGA applications, the geometry is modelled by multiple patches with different physical or geometrical parameters. In particular, we are interested in nonaffine problems characterized by a high-dimensional parameter space. We consider the Empirical Interpolation Method (EIM) to recover an affine parametric dependence and combine domain decomposition to reduce the dimensionality. We couple spline patches in a parameterized setting, where multiple evaluations are performed for a given set of geometrical parameters, and employ the Static Condensation Reduced Basis Element (SCRBE) method. At the common interface between adjacent patches a static condensation procedure is employed, whereas in the interior a reduced basis approximation enables an efficient offline/online decomposition. The full order model over which we setup the RB formulation is based on NURBS approximation, whereas the reduced basis construction relies on techniques such as the Greedy algorithm or proper orthogonal decomposition (POD). We demonstrate the developed procedure using an illustrative model problem on a three-dimensional geometry featuring a multi-dimensional geometrical parameterization.