论文标题

可控制的GAN合成,使用非刚性结构从动作中进行

Controllable GAN Synthesis Using Non-Rigid Structure-from-Motion

论文作者

Haas, René, Graßhof, Stella, Brandt, Sami S.

论文摘要

在本文中,我们提出了一种将非刚性结构(NRSFM)与深生成模型相结合的方法,并提出了一个有效的框架,用于在2D GAN的潜在空间中发现与3D几何变化相对应的潜在空间。我们的方法使用NRSFM的最新进展,并可以编辑相机和与潜在代码相关的非刚性形状信息,而无需重新训练发电机。该公式提供了隐式密集的3D重建,因为它可以从任意视图角度和非刚性结构中构成新形状的图像综合。该方法建立在稀疏的骨架上,该主骨首先是对神经回归器的训练,以回归参数,以直接从潜在代码中直接从潜在的代码中描述相机和稀疏的非刚性结构。然后,通过估计给定潜在代码附近的回归器局部反面来识别与相机和结构参数变化相关的潜在轨迹。实验表明,我们的方法提供了一种多功能,系统的方式来建模,分析和编辑面部的几何形状和非刚性结构。

In this paper, we present an approach for combining non-rigid structure-from-motion (NRSfM) with deep generative models,and propose an efficient framework for discovering trajectories in the latent space of 2D GANs corresponding to changes in 3D geometry. Our approach uses recent advances in NRSfM and enables editing of the camera and non-rigid shape information associated with the latent codes without needing to retrain the generator. This formulation provides an implicit dense 3D reconstruction as it enables the image synthesis of novel shapes from arbitrary view angles and non-rigid structure. The method is built upon a sparse backbone, where a neural regressor is first trained to regress parameters describing the cameras and sparse non-rigid structure directly from the latent codes. The latent trajectories associated with changes in the camera and structure parameters are then identified by estimating the local inverse of the regressor in the neighborhood of a given latent code. The experiments show that our approach provides a versatile, systematic way to model, analyze, and edit the geometry and non-rigid structures of faces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源