论文标题

使用盲块正交最小二乘的压缩频谱传感

Compressive Spectrum Sensing Using Blind-Block Orthogonal Least Squares

论文作者

Lu, Liyang, Xu, Wenbo, Wang, Yue, Tian, Zhi

论文摘要

压缩感(CS)最近成为宽带光谱传感的一种极其有效的技术。在压缩频谱传感(CSS)中,有必要事先了解稀疏性或噪声信息以进行可靠的重建。但是,这种信息通常在实际应用中不存在。在本文中,我们提出了一种基于盲的正交最小二乘压缩频谱传感(B-BOLS-CSS)算法,该算法利用了一种新颖的盲式停止规则将绳索切割为这些先前信息。具体而言,我们首先根据基于相互不一致属性(MIP)的BOL算法提供了无噪声和嘈杂的回收保证。然后,我们由它们制定了盲止式规则,该规则利用了$ \ ell_ {2,\ infty} $足够的统计量来盲目测试其余测量矩阵中的支撑原子。我们通过开发信噪比(SNR)的下限,进一步评估整体B-BOLS-CSS算法的理论性能分析,以确保精确恢复的概率不低于给定阈值。仿真不仅证明了我们衍生的理论结果的改善,而且还说明了B-Bols-CSS在低SNR环境和高SNR环境中都可以很好地工作。

Compressive sensing (CS) has recently emerged as an extremely efficient technology of the wideband spectrum sensing. In compressive spectrum sensing (CSS), it is necessary to know the sparsity or the noise information in advance for reliable reconstruction. However, such information is usually absent in practical applications. In this paper, we propose a blind-block orthogonal least squares-based compressive spectrum sensing (B-BOLS-CSS) algorithm, which utilizes a novel blind stopping rule to cut the cords to these prior information. Specifically, we first present both the noiseless and noisy recovery guarantees for the BOLS algorithm based on the mutual incoherence property (MIP). Motivated by them, we then formulate the blind stopping rule, which exploits an $\ell_{2,\infty}$ sufficient statistic to blindly test the support atoms in the remaining measurement matrix. We further evaluate the theoretical performance analysis of the holistic B-BOLS-CSS algorithm by developing a lower bound of the signal-to-noise ratio (SNR) to ensure that the probability of exact recovery is no lower than a given threshold. Simulations not only demonstrate the improvement of our derived theoretical results, but also illustrate that B-BOLS-CSS works well in both low and high SNR environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源