论文标题

通过半采样来增强半监督的3D对象检测

Boosting Semi-Supervised 3D Object Detection with Semi-Sampling

论文作者

Wu, Xiaopei, Zhao, Yang, Peng, Liang, Chen, Hua, Huang, Xiaoshui, Lin, Binbin, Liu, Haifeng, Cai, Deng, Ouyang, Wanli

论文摘要

当前的3D对象检测方法在很大程度上依赖大量注释。半监督学习可以用来减轻此问题。先前的半监督3D对象检测方法直接遵循完全监督的方法的实践,以增强标记和未标记的数据,这是最佳的。在本文中,我们为半监督学习设计了一种数据增强方法,我们称之为半采样。具体而言,我们分别在标记的框架和未标记的框架上使用地面真相标签和伪标签来裁切样品和伪样品。然后,我们可以生成GT样本数据库和伪样本数据库。在训练教师的半监督框架时,我们将GT样品和伪样品随机选择到标记的框架和未标记的帧,为它们提供了强大的数据增强。我们的半采样可被视为GT采样到半监督学习的扩展。我们的方法简单但有效。我们始终通过大幅度利润来提高扫描仪,Sun-RGBD和Kitti基准测试的最新方法。例如,当仅使用10%标记的数据训练时,我们根据[email protected][email protected]实现3.1 MAP和6.4地图改进。当仅使用1%标记的Kitti标记数据训练时,我们通过3.5地图,6.7 MAP和14.1 MAP在汽车,行人和骑自行车的人类阶级上提升3DiouMatch。代码将在https://github.com/littlepey/semi-sampling上公开提供。

Current 3D object detection methods heavily rely on an enormous amount of annotations. Semi-supervised learning can be used to alleviate this issue. Previous semi-supervised 3D object detection methods directly follow the practice of fully-supervised methods to augment labeled and unlabeled data, which is sub-optimal. In this paper, we design a data augmentation method for semi-supervised learning, which we call Semi-Sampling. Specifically, we use ground truth labels and pseudo labels to crop gt samples and pseudo samples on labeled frames and unlabeled frames, respectively. Then we can generate a gt sample database and a pseudo sample database. When training a teacher-student semi-supervised framework, we randomly select gt samples and pseudo samples to both labeled frames and unlabeled frames, making a strong data augmentation for them. Our semi-sampling can be regarded as an extension of gt-sampling to semi-supervised learning. Our method is simple but effective. We consistently improve state-of-the-art methods on ScanNet, SUN-RGBD, and KITTI benchmarks by large margins. For example, when training using only 10% labeled data on ScanNet, we achieve 3.1 mAP and 6.4 mAP improvement upon 3DIoUMatch in terms of [email protected] and [email protected]. When training using only 1% labeled data on KITTI, we boost 3DIoUMatch by 3.5 mAP, 6.7 mAP and 14.1 mAP on car, pedestrian and cyclist classes. Codes will be made publicly available at https://github.com/LittlePey/Semi-Sampling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源