论文标题

分层控制,用于两个四四座机器人的合作运动:集中和分布式方法

Layered Control for Cooperative Locomotion of Two Quadrupedal Robots: Centralized and Distributed Approaches

论文作者

Kim, Jeeseop, Fawcett, Randall T, Kamidi, Vinay R, Ames, Aaron D, Hamed, Kaveh Akbari

论文摘要

本文提出了一种分层控制方法,用于实时轨迹计划,并通过两个自动限制的四倍体机器人对鲁棒合作的运动控制。基于单个刚体(SRB)动力学的新型互连网络是出于轨迹计划目的而开发的。在控制体系结构的较高级别上,提出了两个不同的模型预测控制(MPC)算法来解决互连SRB动力学的最佳控制问题:集中和分布式MPC。分布式MPC假设两个本地二次程序,它们根据单步沟通延迟和协议协议共享其最佳解决方案。在控制方案的较低级别,开发了分布式非线性控制器,以强加全阶动力学,以跟踪MPC生成的规定的减少阶段轨迹。通过广泛的数值模拟和实验对控制方法的有效性进行了验证,并实验了两个具有自动限制的A1机器人的强大和合作运动,并在可变地形上以及存在干扰的情况下具有不同的有效载荷。结果表明,分布式MPC的性能与集中式MPC相似,而计算时间大大减少。

This paper presents a layered control approach for real-time trajectory planning and control of robust cooperative locomotion by two holonomically constrained quadrupedal robots. A novel interconnected network of reduced-order models, based on the single rigid body (SRB) dynamics, is developed for trajectory planning purposes. At the higher level of the control architecture, two different model predictive control (MPC) algorithms are proposed to address the optimal control problem of the interconnected SRB dynamics: centralized and distributed MPCs. The distributed MPC assumes two local quadratic programs that share their optimal solutions according to a one-step communication delay and an agreement protocol. At the lower level of the control scheme, distributed nonlinear controllers are developed to impose the full-order dynamics to track the prescribed reduced-order trajectories generated by MPCs. The effectiveness of the control approach is verified with extensive numerical simulations and experiments for the robust and cooperative locomotion of two holonomically constrained A1 robots with different payloads on variable terrains and in the presence of disturbances. It is shown that the distributed MPC has a performance similar to that of the centralized MPC, while the computation time is reduced significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源