论文标题
抛物线伴奏的构图图表和重建,用于抛物线的伴奏动作类型$ a $
The Composition Tableau and Reconstruction of the Canonical Weierstrass Section for Parabolic Adjoint Action in type $A$
论文作者
论文摘要
构建了一个“构图图”,依靠早期的工作[Y。 Fittouhi和A. Joseph,《抛物线伴随动作》,《韦尔斯特拉斯》部分和nilfibre的组件,类型为$ a $,indag Math。以及Y. Fittouhi和A. Joseph,Nilfibre的规范组成部分,用于抛物线旁的动作,WeierStrass部分$ a $,Preprint,weizmann,2021年]。它定义了一个构图图表,该图表恢复了上面第一篇论文中描述的“规范” Weierstrass部分$ E+V $。此外,\ textit {没有引用此较早的工作},然后证明$ e+v $确实是Weierstrass部分。这导致了巨大的简化。此外,可以从上述论文第二篇文章的“ vs Quadruplets”中读取,从而描述了$ e $所在但没有确定的尼尔纤维的“规范组件”。
A "Composition map" is constructed, leaning heavily on earlier work [Y. Fittouhi and A. Joseph, Parabolic adjoint action, Weierstrass sections and components of the nilfibre in type $A$, Indag Math. and Y. Fittouhi and A. Joseph, The canonical component of the nilfibre for parabolic adjoint action, Weierstrass sections in type $A$, preprint, Weizmann, 2021]. It defines a composition tableau which recovers the "canonical" Weierstrass section $e+V$ described in the first paper above. Moreover \textit{without reference to this earlier work}, it is then shown that $e+V$ is indeed a Weierstrass section. This results in a huge simplification. Moreover one may read off from the composition tableau the "VS quadruplets'' of the second of the above papers, thereby describing the "canonical component" of the nil-fibre in which $e$ lies but does not of itself determine.