论文标题

DRIFTREC:将扩散模型调整为盲目的jpeg恢复

DriftRec: Adapting diffusion models to blind JPEG restoration

论文作者

Welker, Simon, Chapman, Henry N., Gerkmann, Timo

论文摘要

在这项工作中,我们利用扩散模型的高保真生成能力来解决高压水平上的盲目JPEG恢复。我们提出了对扩散模型的正向随机微分方程的优雅修改,以使其适应此修复任务并命名我们的方法driftrec。将Driftrec与$ L_2 $回归基线与JPEG恢复的最新技术和最先进的技术进行比较,我们表明我们的方法可以避免其他方法产生模糊图像的趋势,并更忠实地恢复了清洁图像的分布。为此,只有一个清洁/损坏的图像对数据集,并且不需要有关损坏操作的知识,从而使更广泛的适用性适用于其他恢复任务。与其他条件和无条件扩散模型相反,我们利用这样的想法,即干净和损坏的图像的分布比彼此更接近彼此,这与扩散模型中反向过程的通常高斯先验。因此,我们的方法只需要较低的噪声,即使没有进一步的优化,也需要相对较少的采样步骤。我们表明,Driftrec自然会概括为现实且困难的场景,例如在线发现的JPEG的双重jpeg压缩和盲目恢复,而没有在培训期间遇到过此类示例。

In this work, we utilize the high-fidelity generation abilities of diffusion models to solve blind JPEG restoration at high compression levels. We propose an elegant modification of the forward stochastic differential equation of diffusion models to adapt them to this restoration task and name our method DriftRec. Comparing DriftRec against an $L_2$ regression baseline with the same network architecture and state-of-the-art techniques for JPEG restoration, we show that our approach can escape the tendency of other methods to generate blurry images, and recovers the distribution of clean images significantly more faithfully. For this, only a dataset of clean/corrupted image pairs and no knowledge about the corruption operation is required, enabling wider applicability to other restoration tasks. In contrast to other conditional and unconditional diffusion models, we utilize the idea that the distributions of clean and corrupted images are much closer to each other than each is to the usual Gaussian prior of the reverse process in diffusion models. Our approach therefore requires only low levels of added noise and needs comparatively few sampling steps even without further optimizations. We show that DriftRec naturally generalizes to realistic and difficult scenarios such as unaligned double JPEG compression and blind restoration of JPEGs found online, without having encountered such examples during training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源