论文标题
用于预算有效学习的神经网络的部分二聚
Partial Binarization of Neural Networks for Budget-Aware Efficient Learning
论文作者
论文摘要
二进制化是一种强大的压缩技术,可大大减少失败,但通常会导致模型性能显着下降。为了解决这个问题,已经开发了部分二进制技术,但是仍然缺乏在单个网络中混合二进制和完整精确参数的系统方法。在本文中,我们提出了一种受控的部分二元方法,通过我们的Mixbin策略创建了预算的二进制神经网络(B2NN)。此方法优化了二进制和完整精确组件的混合,从而可以明确选择网络的分数以保持二进制。我们的实验表明,B2NN使用Mixbin优于从随机或迭代搜索和最新的层选择方法中创建的B2NN胜过Imagenet-1K数据集中最多3%。我们还表明,B2NNS在15%的极端失败预算下优于结构化修剪基线约23%,并且在对象跟踪方面的表现良好,比其他基线相对相对相对的相对改善高达12.4%。此外,我们证明了Mixbin开发的B2NN可以在数据集中传输,其中一些情况显示出比直接在下游数据上应用Mixbin的性能的改善。
Binarization is a powerful compression technique for neural networks, significantly reducing FLOPs, but often results in a significant drop in model performance. To address this issue, partial binarization techniques have been developed, but a systematic approach to mixing binary and full-precision parameters in a single network is still lacking. In this paper, we propose a controlled approach to partial binarization, creating a budgeted binary neural network (B2NN) with our MixBin strategy. This method optimizes the mixing of binary and full-precision components, allowing for explicit selection of the fraction of the network to remain binary. Our experiments show that B2NNs created using MixBin outperform those from random or iterative searches and state-of-the-art layer selection methods by up to 3% on the ImageNet-1K dataset. We also show that B2NNs outperform the structured pruning baseline by approximately 23% at the extreme FLOP budget of 15%, and perform well in object tracking, with up to a 12.4% relative improvement over other baselines. Additionally, we demonstrate that B2NNs developed by MixBin can be transferred across datasets, with some cases showing improved performance over directly applying MixBin on the downstream data.