论文标题
使用量子错误检测代码保护表达电路
Protecting Expressive Circuits with a Quantum Error Detection Code
论文作者
论文摘要
成功的量子误差校正协议将使量子计算机能够运行算法而不会遭受噪声影响。但是,对于现有的量子计算机而言,完全容忍的量子误差校正过于资源。在这种情况下,我们为现有的被困离子计算机上的实现开发了量子错误检测代码。通过将$ k $逻辑Qubits编码到$ K+2 $物理Qubits中,该代码显示了容易的状态初始化和综合征测量电路,这些电路可以检测到任何单点错误。它提供了一套通用的本地和全局逻辑旋转,它们仅在两个量子位上具有物理支持。高保真性 - 尽管不容忍故障,但由于具有全能连接性的陷阱离子计算机中存在的两倍旋转,因此可以对此通用门集进行汇编。鉴于逻辑运算符的特定结构,我们将其昵称为冰山代码。我们证明了8个逻辑Qubit的电路的保护,最多256层,饱和$ 2^8 $的逻辑量子体积,并显示出增加电路内综合征测量频率的积极效果。这些结果说明了冰山代码在现有的捕获量量子计算机上保护表达电路的实际实用性。
A successful quantum error correction protocol would allow quantum computers to run algorithms without suffering from the effects of noise. However, fully fault-tolerant quantum error correction is too resource intensive for existing quantum computers. In this context we develop a quantum error detection code for implementations on existing trapped-ion computers. By encoding $k$ logical qubits into $k+2$ physical qubits, this code presents fault-tolerant state initialisation and syndrome measurement circuits that can detect any single-qubit error. It provides a universal set of local and global logical rotations that have physical support on only two qubits. A high-fidelity -- though non fault-tolerant -- compilation of this universal gate set is possible thanks to the two-qubit physical rotations present in trapped-ion computers with all-to-all connectivity. Given the particular structure of the logical operators, we nickname it the Iceberg code. We demonstrate the protection of circuits of 8 logical qubits with up to 256 layers, saturate the logical quantum volume of $2^8$, and show the positive effect of increasing the frequency of syndrome measurements within the circuit. These results illustrate the practical usefulness of the Iceberg code to protect expressive circuits on existing trapped-ion quantum computers.