论文标题

在无向图的最大K边缘连接子图上

On maximal k-edge-connected subgraphs of undirected graphs

论文作者

Georgiadis, Loukas, Italiano, Giuseppe F., Kosinas, Evangelos, Pattanayak, Debasish

论文摘要

我们展示了如何找到并有效地维持非方向图中的最大K边缘连接子图。特别是,我们提供以下结果。 (1)通过将图形依次将图形分配到其K-边缘连接的组件中,用于在边缘或顶点插入时保持最大K边缘连接子图的一般框架。这定义了一个分解树,可以通过使用算法来维护该算法在树的每个层面上作为黑匣子作为黑匣子的增量维护。 (2)作为此框架的应用,我们提供了两种算法,用于增量维护最大$ 3 $ - 边缘连接子图。这些算法允许顶点和边缘插入,并散布在查询中,询问两个顶点是否属于相同的最大$ 3 $ 3 $ - 与连接的子图。第一个算法具有$ o(mα(m,n) + n^2 \ log^2 n)$总运行时间并使用$ o(n)$ space,其中$ m $是边缘插入和查询的数量,而$ n $是插入的顶点的总数。第二算法使用$ O(n^2)$ space,总共以更快的$ o(mα(m,n) + n^2α(n,n))$时间执行相同的操作。 (3)我们提供的稀疏子图的有效构造具有与原始图相同的最大K边缘连接子图。这些对于涉及密集无向图的最大K边缘连接子图的计算而有用。 (4)我们给出了两种确定性算法,用于计算无方向图中的最大k边缘连接子图,并使用运行时间$ O(m+k^{o(1)} n \ sqrt {n} {n} \ mathrm $ O(m+k^{o(k)} n \ sqrt {n} \ log {n})$。 (5)一种完全动态的算法,用于维护有关固定k的最大K边缘连接子图的信息。我们的更新范围是$ o(n \ sqrt {n} \ log {n})$糟糕的时间,我们达到了最大k-边缘连接子图的最大时间的恒定时间。

We show how to find and efficiently maintain maximal k-edge-connected subgraphs in undirected graphs. In particular, we provide the following results. (1) A general framework for maintaining the maximal k-edge-connected subgraphs upon insertions of edges or vertices, by successively partitioning the graph into its k-edge-connected components. This defines a decomposition tree, which can be maintained by using algorithms for the incremental maintenance of the k-edge-connected components as black boxes at every level of the tree. (2) As an application of this framework, we provide two algorithms for the incremental maintenance of the maximal $3$-edge-connected subgraphs. These algorithms allow for vertex and edge insertions, interspersed with queries asking whether two vertices belong to the same maximal $3$-edge-connected subgraph. The first algorithm has $O(mα(m,n) + n^2\log^2 n)$ total running time and uses $O(n)$ space, where $m$ is the number of edge insertions and queries, and $n$ is the total number of vertices inserted. The second algorithm performs the same operations in faster $O(mα(m,n) + n^2α(n,n))$ time in total, using $O(n^2)$ space. (3) We provide efficient constructions of sparse subgraphs that have the same maximal k-edge-connected subgraphs as the original graph. These are useful in speeding up computations involving the maximal k-edge-connected subgraphs in dense undirected graphs. (4) We give two deterministic algorithms for computing the maximal k-edge-connected subgraphs in undirected graphs, with running times $O(m+k^{O(1)}n\sqrt{n}\mathrm{polylog}(n))$ and $O(m+k^{O(k)}n\sqrt{n}\log{n})$, respectively. (5) A fully dynamic algorithm for maintaining information about the maximal k-edge-connected subgraphs for fixed k. Our update bounds are $O(n\sqrt{n}\log{n})$ worst-case time, and we achieve constant time for maximal k-edge-connected subgraph queries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源