论文标题

线性宽度神经网络中的光谱演变和不变性

Spectral Evolution and Invariance in Linear-width Neural Networks

论文作者

Wang, Zhichao, Engel, Andrew, Sarwate, Anand, Dumitriu, Ioana, Chiang, Tony

论文摘要

我们研究了线性宽度前馈神经网络的光谱特性,其中样本量与网络宽度成正比。从经验上讲,我们表明,通过梯度下降训练以较小的恒定学习率训练,在这种高维度方面的体重光谱是不变的。我们为这一观察结果提供了理论上的理由,并证明了共轭和神经切线内核的整体光谱的不变性。我们在学习率较小的随机梯度下降训练时表现出相似的特征。当学习率很高时,我们会表现出一个异常值的出现,该异常值与训练数据结构相一致。我们还表明,在自适应梯度训练(较低的测试错误和特征学习出现)之后,体重和核矩阵都表现出重型尾巴行为。提供了简单的示例来解释何时重尾能更好地概括。我们使用不同的培训策略表现出不同的光谱特性,例如两层神经网络的不变散装,尖峰和重尾分布,然后将它们与特征学习相关联。当我们使用现实世界数据训练常规神经网络时,也会出现类似现象。我们得出的结论是,在训练过程中监视光谱的演变是了解训练动态和特征学习的重要步骤。

We investigate the spectral properties of linear-width feed-forward neural networks, where the sample size is asymptotically proportional to network width. Empirically, we show that the spectra of weight in this high dimensional regime are invariant when trained by gradient descent for small constant learning rates; we provide a theoretical justification for this observation and prove the invariance of the bulk spectra for both conjugate and neural tangent kernels. We demonstrate similar characteristics when training with stochastic gradient descent with small learning rates. When the learning rate is large, we exhibit the emergence of an outlier whose corresponding eigenvector is aligned with the training data structure. We also show that after adaptive gradient training, where a lower test error and feature learning emerge, both weight and kernel matrices exhibit heavy tail behavior. Simple examples are provided to explain when heavy tails can have better generalizations. We exhibit different spectral properties such as invariant bulk, spike, and heavy-tailed distribution from a two-layer neural network using different training strategies, and then correlate them to the feature learning. Analogous phenomena also appear when we train conventional neural networks with real-world data. We conclude that monitoring the evolution of the spectra during training is an essential step toward understanding the training dynamics and feature learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源