论文标题
使用港口港系统的行人集体动态的多尺度描述
Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems
论文作者
论文摘要
哈米尔顿港系统(PHS)理论是一种非线性物理系统的最新但已经建立的建模方法。一些研究最近表明,PHS框架与群和多代理系统的建模和控制有关。我们在这一贡献中确定了一类基于微观力量的行人模型,可以作为哈米尔顿港系统配制。行人PHS具有线性结构和耗散成分。非线性效应来自各向同性的人行人相互作用。在具有无序初始状态的圆环上的仿真结果表明,哈米尔顿港的行人模型可以表现出不同类型的动力学。它们的范围从没有相互作用的放松速度模型,动力学台球或结晶动力学到现实的行人集体行为,包括用于计数器和交叉流的车道和带状形成。哈米尔顿港框架是对行人动力学的自然多尺度描述,因为哈密顿量被证明是一个通用的订单参数,它使我们能够从宏观观点识别动力学的特定行为。特定情况甚至可以通过能量平衡来确定哈密顿行为,而无需微观动力学的繁琐计算。使用PHS理论,我们系统地确定了哈密顿量的临界阈值,该阈值仅依赖于外源输入,并且可以进行物理上的解释。
Port-Hamiltonian systems (PHS) theory is a recent but already well-established modelling approach for non-linear physical systems. Some studies have shown lately that PHS frameworks are relevant for modelling and control of swarm and multi-agent systems. We identify in this contribution a general class of microscopic force-based pedestrian models that can be formulated as a port-Hamiltonian system. The pedestrian PHS has linear structure and dissipation components. Non-linear effects come from isotropic pedestrian interactions. Simulation results on a torus with disordered initial states show that the port-Hamiltonian pedestrian model can exhibit different types of dynamics. They range from relaxed speed models with no interaction, dynamical billiards, or crystallization dynamics to realistic pedestrian collective behaviors, including lane and strip formation for counter and crossing flow. The port-Hamiltonian framework is a natural multiscale description of pedestrian dynamics as the Hamiltonian turns out to be a generic order parameter that allows us to identify specific behaviours of the dynamics from a macroscopic viewpoint. Particular cases even enable through energy balance to determine the Hamiltonian behavior without requiring the tedious computation of the microscopic dynamics. Using PHS theory, we systematically identify a critical threshold value for the Hamiltonian, which relies only on exogenous input and can be physically interpreted.