论文标题

通过利用一般内容和个人风格,联合无监督的视觉表示学习

Federated Unsupervised Visual Representation Learning via Exploiting General Content and Personal Style

论文作者

Yang, Yuewei, Sun, Jingwei, Li, Ang, Li, Hai, Chen, Yiran

论文摘要

歧视性的无监督学习方法(例如对比度学习)证明了在集中式数据上学习通用的视觉表示的能力。然而,由于用户样式和偏好,将这种方法调整到具有未标记,私有和异质客户数据的分布式系统中,这是一个挑战。联合学习使多个客户能够集体学习全球模型,而无需引起本地客户之间的任何隐私漏洞。另一方面,联邦学习研究的另一个方向个性化方法来解决局部异质性。但是,在分散环境中没有标签的情况下解决概括和个性化的工作仍然不熟悉。在这项工作中,我们建议一种新颖的方法Fedstyle,通过将本地样式信息注入本地内容信息以进行对比学习,并通过诱导本地样式信息来学习更多个性化的本地模型,从而学习了一个更概括的全球模型。通过将原始本地数据与强烈增强的本地数据(SOBEL过滤图像)进行对比,提取了样式信息。通过在IID和非IID设置中进行线性评估的广泛实验,我们证明了FedStyle在风格化的分散设置中优于概括基线方法和个性化基线方法。通过全面的消融,我们展示了我们的风格输液设计和风格化的个性化设计可显着提高性能。

Discriminative unsupervised learning methods such as contrastive learning have demonstrated the ability to learn generalized visual representations on centralized data. It is nonetheless challenging to adapt such methods to a distributed system with unlabeled, private, and heterogeneous client data due to user styles and preferences. Federated learning enables multiple clients to collectively learn a global model without provoking any privacy breach between local clients. On the other hand, another direction of federated learning studies personalized methods to address the local heterogeneity. However, work on solving both generalization and personalization without labels in a decentralized setting remains unfamiliar. In this work, we propose a novel method, FedStyle, to learn a more generalized global model by infusing local style information with local content information for contrastive learning, and to learn more personalized local models by inducing local style information for downstream tasks. The style information is extracted by contrasting original local data with strongly augmented local data (Sobel filtered images). Through extensive experiments with linear evaluations in both IID and non-IID settings, we demonstrate that FedStyle outperforms both the generalization baseline methods and personalization baseline methods in a stylized decentralized setting. Through comprehensive ablations, we demonstrate our design of style infusion and stylized personalization improve performance significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源