论文标题
旋转对称性骨器代码的量子误差缓解与对称扩展
Quantum error mitigation for rotation symmetric bosonic codes with symmetry expansion
论文作者
论文摘要
旋转对称的玻体代码(RSBC)是具有旋转对称性(例如CAT代码和二项式代码)的实用骨码的统一框架。尽管CAT代码达到了分配量子位的连贯时间超过未编码的Qubits的分配点,而二项式代码几乎接近该点,但仍需要改善状态的准备保真度以实用量子计算。关于这个问题,我们研究了对称扩展的框架,这是一类量子误差缓解措施,通过利用系统的内在对称性和测量结果后处理,将状态实际上将状态投射到无噪声的对称子空间上。尽管对称性扩展仅限于在测量之前立即减轻量子状态的错误,但我们成功地将对称性扩展概括为状态制备。为了实现我们的方法,我们通过Bosonic Code状态与Ancilla Qubit之间的分散相互作用使用Ancilla Qubit,只有两个受控的旋转门。有趣的是,这种方法还允许我们仅从易于备件的状态(例如连贯的状态)准备RSBC状态。我们还讨论了,当由于低测量保真度而无法使用旋转骨架代码的对称性时,可以应用常规的对称扩展协议来提高计算保真度。通过给出有关误差状态与理想状态与减轻量子误差的采样成本之间的痕量距离的全面分析和数值论点,我们表明对称性扩展会极大地抑制光子损失的效果。我们的新型误差缓解方法将显着提高近期玻色量量子计算范式中的计算精度。
The rotation symmetric bosonic code (RSBC) is a unified framework of practical bosonic codes that have rotation symmetries, such as cat codes and binomial codes. While cat codes achieve the break-even point in which the coherence time of the encoded qubits exceeds that of unencoded qubits, with binomial codes nearly approaching that point, the state preparation fidelity needs to be still improved for practical quantum computing. Concerning this problem, we investigate the framework of symmetry expansion, a class of quantum error mitigation that virtually projects the state onto the noise-free symmetric subspace by exploiting the system's intrinsic symmetries and post-processing of measurement outcomes. Although symmetry expansion has been limited to error mitigation of quantum states immediately before measurement, we successfully generalize symmetry expansion for state preparation. To implement our method, we use an ancilla qubit and only two controlled-rotation gates via dispersive interactions between the bosonic code states and the ancilla qubit. Interestingly, this method also allows us to virtually prepare the RSBC states only from easy-to-prepare states, e.g., coherent states. We also discuss that the conventional symmetry expansion protocol can be applied to improve the computation fidelity when the symmetries of rotation bosonic codes are unavailable due to low measurement fidelity. By giving comprehensive analytical and numerical arguments regarding the trace distance between the error-mitigated state and the ideal state and the sampling cost of quantum error mitigation, we show that symmetry expansion dramatically suppresses the effect of photon loss. Our novel error mitigation method will significantly enhance computation accuracy in the near-term bosonic quantum computing paradigm.