论文标题
带有图结构的空间时间图卷积自学习早期检测
Spatial Temporal Graph Convolution with Graph Structure Self-learning for Early MCI Detection
论文作者
论文摘要
图形神经网络(GNN)已成功应用于早期的轻度认知障碍(EMCI)检测,并使用精心设计的特征,该特征由血氧水平依赖性(BOLD)时间序列构建。但是,很少有作品探讨了直接使用粗体信号作为功能的可行性。同时,现有的基于GNN的方法主要依赖于手工制作的显式脑拓扑作为邻接矩阵,该矩阵并不是最佳的,并且忽略了大脑的隐式拓扑组织。在本文中,我们提出了一个空间时间图卷积网络,该网络具有新型的图形结构自学习机制,用于EMCI检测。提出的空间时间图卷积块直接利用了大胆的时间序列作为输入特征,这为基于RSFMRI的临床前AD诊断提供了有趣的视图。此外,我们的模型可以通过图形结构自学习机制自适应地学习最佳拓扑结构和完善边缘权重。阿尔茨海默氏病神经影像倡议(ADNI)数据库的结果表明,我们的方法的表现优于最先进的方法。可以从模型中提取与先前研究一致的生物标志物,证明我们方法的可靠解释性。
Graph neural networks (GNNs) have been successfully applied to early mild cognitive impairment (EMCI) detection, with the usage of elaborately designed features constructed from blood oxygen level-dependent (BOLD) time series. However, few works explored the feasibility of using BOLD signals directly as features. Meanwhile, existing GNN-based methods primarily rely on hand-crafted explicit brain topology as the adjacency matrix, which is not optimal and ignores the implicit topological organization of the brain. In this paper, we propose a spatial temporal graph convolutional network with a novel graph structure self-learning mechanism for EMCI detection. The proposed spatial temporal graph convolution block directly exploits BOLD time series as input features, which provides an interesting view for rsfMRI-based preclinical AD diagnosis. Moreover, our model can adaptively learn the optimal topological structure and refine edge weights with the graph structure self-learning mechanism. Results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database show that our method outperforms state-of-the-art approaches. Biomarkers consistent with previous studies can be extracted from the model, proving the reliable interpretability of our method.