论文标题

独特词OFDM系统中数据估计的神经网络方法

Neural Network Approaches for Data Estimation in Unique Word OFDM Systems

论文作者

Baumgartner, Stefan, Bognár, Gergő, Lang, Oliver, Huemer, Mario

论文摘要

自数字通信开始以来,使用基于模型的估计方法进行数据估计。然而,由于机器学习的不断增长,当前的研究重点是通过数据驱动方法(主要是神经网络(NNS))替换基于模型的数据估计方法。在这项工作中,我们特别研究了将现有模型知识纳入数据驱动的方法,这有望导致降低和 /或性能提高。我们描述了三种不同的选项,即“模型启发”预处理,选择由基础通信系统的属性促进的NN体系结构,并借助于模型知识来推断NN的层结构。基于NN的大多数基于NN的数据估计的大多数出版物都与一般多输入交流(MIMO)的唯一数据估计,我们对NN数据估算的大多数出版物进行了研究。多路复用(UW-OFDM)系统。在这种情况下,我们比较了有关达到的误差比性能和计算复杂性的介绍的NN,我们显示了其数据估计的特殊分布,并且我们还指出了与基于模型的均衡器相比的缺点。

Data estimation is conducted with model-based estimation methods since the beginning of digital communications. However, motivated by the growing success of machine learning, current research focuses on replacing model-based data estimation methods by data-driven approaches, mainly neural networks (NNs). In this work, we particularly investigate the incorporation of existing model knowledge into data-driven approaches, which is expected to lead to complexity reduction and / or performance enhancement. We describe three different options, namely "model-inspired'' pre-processing, choosing an NN architecture motivated by the properties of the underlying communication system, and inferring the layer structure of an NN with the help of model knowledge. Most of the current publications on NN-based data estimation deal with general multiple-input multiple-output communication (MIMO) systems. In this work, we investigate NN-based data estimation for so-called unique word orthogonal frequency division multiplexing (UW-OFDM) systems. We highlight differences between UW-OFDM systems and general MIMO systems one has to be aware of when using NNs for data estimation, and we introduce measures for successful utilization of NN-based data estimators in UW-OFDM systems. Further, we investigate the use of NNs for data estimation when channel coded data transmission is conducted, and we present adaptions to be made, such that NN-based data estimators provide satisfying performance for this case. We compare the presented NNs concerning achieved bit error ratio performance and computational complexity, we show the peculiar distributions of their data estimates, and we also point out their downsides compared to model-based equalizers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源