论文标题

可调的声学超材料中的非奇异和奇异的扁平带

Non-singular and singular flat bands in tunable acoustic metamaterials

论文作者

Karki, Pragalv, Paulose, Jayson

论文摘要

无散的平谱带可以分为两种类型:(1)非单独的平坦带的本征谱完全以紧凑的局部状态表征; (2)奇异的平坦带,在带有相邻的色散频段的带触点的Bloch本征函数中具有不连续性,因此需要额外的扩展状态才能跨越其本本征空间。在这项研究中,我们设计和数值证明了二维薄板声音超材料,可以在其中实现两种可调的平坦带。通过微调板谐振器的三角形和蜂窝晶格的弯曲刚度,可以实现非明显的平坦带。由于底层晶格几何形状,可以通过调整板张力来使两个额外的平面频带在kagome晶格中产生一个单一的平坦带。连续薄板系统的离散模型揭示了确定两种类型的平坦带的存在时的几何和机械因素的相互作用。 Kagome晶格平面带的单数性质是通过称为Hilbert-Schmidt距离的度量标准建立的,该度量在一对特征状态之间计算出无限次临时接近二次带接触点。我们还模拟了由奇异的扁平带引起的强大边界模式的声学表现,并在有限系统中受到真实空间拓扑的保护。我们的理论和计算研究建立了一个框架,用于在可调的古典系统中探索平面物理,并用于设计具有潜在有用的声音操纵功能的声学超材料。

Dispersionless flat bands can be classified into two types: (1) non-singular flat bands whose eigenmodes are completely characterized by compact localized states; and (2) singular flat bands that have a discontinuity in their Bloch eigenfunctions at a band touching point with an adjacent dispersive band, thereby requiring additional extended states to span their eigenmode space. In this study, we design and numerically demonstrate two-dimensional thin-plate acoustic metamaterials in which tunable flat bands of both kinds can be achieved. Non-singular flat bands are achieved by fine-tuning the ratio of the global tension and the bending stiffness in triangular and honeycomb lattices of plate resonators. A singular flat band arises in a kagome lattice due to the underlying lattice geometry, which can be made degenerate with two additional flat bands by tuning the plate tension. A discrete model of the continuum thin-plate system reveals the interplay of geometric and mechanical factors in determining the existence of flat bands of both types. The singular nature of the kagome lattice flat band is established via a metric called the Hilbert-Schmidt distance calculated between a pair of eigenstates infinitesimally close to the quadratic band touching point. We also simulate an acoustic manifestation of a robust boundary mode arising from the singular flat band and protected by real-space topology in a finite system. Our theoretical and computational study establishes a framework for exploring flat-band physics in a tunable classical system, and for designing acoustic metamaterials with potentially useful sound manipulation capabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源