论文标题

开放设定的自动目标识别

Open-Set Automatic Target Recognition

论文作者

Safaei, Bardia, VS, Vibashan, de Melo, Celso M., Hu, Shuowen, Patel, Vishal M.

论文摘要

自动目标识别(ATR)是计算机视觉算法的类别,它试图识别从不同传感器获得的数据的目标。 ATR算法在现实世界中广泛使用,例如军事和监视应用。现有的ATR算法是针对传统的封闭式方法开发的,在传统的封闭式方法中,培训和测试具有相同的课程分布。因此,对于在训练阶段未见的未知类别,这些算法并不是强大的,从而限制了它们在实际应用中的效用。为此,我们提出了一个开放设定的自动目标识别框架,在该框架中,我们可以对ATR算法启用开放式识别能力。此外,我们介绍了一个插件类别感知的二进制分类器(CBC)模块,以有效地处理推理期间看到的未知类别。提出的CBC模块可以轻松地与任何现有的ATR算法集成,并且可以以端到端的方式进行培训。实验结果表明,所提出的方法的表现优于DSIAC和CIFAR-10数据集上的许多开放式方法。据我们所知,这是解决ATR算法的开放集分类问题的第一项工作。源代码可在以下网址获得:https://github.com/bardisafa/open-set-atr。

Automatic Target Recognition (ATR) is a category of computer vision algorithms which attempts to recognize targets on data obtained from different sensors. ATR algorithms are extensively used in real-world scenarios such as military and surveillance applications. Existing ATR algorithms are developed for traditional closed-set methods where training and testing have the same class distribution. Thus, these algorithms have not been robust to unknown classes not seen during the training phase, limiting their utility in real-world applications. To this end, we propose an Open-set Automatic Target Recognition framework where we enable open-set recognition capability for ATR algorithms. In addition, we introduce a plugin Category-aware Binary Classifier (CBC) module to effectively tackle unknown classes seen during inference. The proposed CBC module can be easily integrated with any existing ATR algorithms and can be trained in an end-to-end manner. Experimental results show that the proposed approach outperforms many open-set methods on the DSIAC and CIFAR-10 datasets. To the best of our knowledge, this is the first work to address the open-set classification problem for ATR algorithms. Source code is available at: https://github.com/bardisafa/Open-set-ATR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源