论文标题

部分可观测时空混沌系统的无模型预测

Vibropolaritonic Reaction Rates in the Collective Strong Coupling Regime: Pollak-Grabert-Hänggi Theory

论文作者

Du, Matthew, Poh, Yong Rui, Yuen-Zhou, Joel

论文摘要

经过实验证据表明,由光学微腔内集体振动强耦合(VSC)形成的振动偏振子可以改变地面反应速率,这是通过Pollak-Grakert-Grabert-Hänggi(PGH)理论(超越型号的过渡状态)(TSST)提出的依赖腔诱导的摩擦的理论解释。但是,通过仅考虑一个耦合到光的单个反应分子,这些作品不会捕获实验中存在的集合效应。此外,相关的光耦合应比上一件作品所用的$ \ sqrt {n} $次$次,其中$ n \ oft10^{6} {6} -10^{12} $是集合的大小。在这项工作中,我们解释了为什么这种区别是重要的,并且可以使这些空腔引起的摩擦产生无效。通过分析将空腔PGH模型扩展到$ n $的现实值,我们展示了该模型如何屈服于Polariton“大$ n $问题”,也就是说,单个反应分子只会感觉到集体光 - 互动强度的微小$ 1/n $部分,其中$ n $很大。

Following experimental evidence that vibrational polaritons, formed from collective vibrational strong coupling (VSC) in optical microcavities, can modify ground-state reaction rates, a spate of theoretical explanations relying on cavity-induced frictions has been proposed through the Pollak-Grabert-Hänggi (PGH) theory, which goes beyond transition state theory (TST). However, by considering only a single reacting molecule coupled to light, these works do not capture the ensemble effects present in experiments. Moreover, the relevant light-matter coupling should have been $\sqrt{N}$ times smaller than those used by preceding works, where $N\approx10^{6}-10^{12}$ is the ensemble size. In this work, we explain why this distinction is significant and can nullify effects from these cavity-induced frictions. By analytically extending the cavity PGH model to realistic values of $N$, we show how this model succumbs to the polariton "large $N$ problem", that is, the situation whereby the single reacting molecule feels only a tiny $1/N$ part of the collective light-matter interaction intensity, where $N$ is large.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源