论文标题
燃烧的煎饼图和戈丹图的广义三连通性
The generalized 3-connectivity of burnt pancake graphs and godan graphs
论文作者
论文摘要
图形$ g $的广义$ k $ - 连接性,用$κ_k(g)$表示,是任何$ s \ subseteq v(g)$和$ | s | = k $的内部边缘分离$ s $ s $ s $ s $ s $ s $。广义$ k $ - 连接性是经典连接性的自然扩展,并且在与现代互连网络相关的应用中起关键作用。 Burnt Pancake Graph $ BP_N $和Godan Graph $ ea_n $是两种Cayley图,具有许多理想的属性。在本文中,我们调查了$ bp_n $和$ ea_n $的广义3-连接性。我们表明$κ_3(bp_n)= n-1 $和$κ_3(ea_n)= n-1 $。
The generalized $k$-connectivity of a graph $G$, denoted by $κ_k(G)$, is the minimum number of internally edge disjoint $S$-trees for any $S\subseteq V(G)$ and $|S|=k$. The generalized $k$-connectivity is a natural extension of the classical connectivity and plays a key role in applications related to the modern interconnection networks. The burnt pancake graph $BP_n$ and the godan graph $EA_n$ are two kinds of Cayley graphs which posses many desirable properties. In this paper, we investigate the generalized 3-connectivity of $BP_n$ and $EA_n$. We show that $κ_3(BP_n)=n-1$ and $κ_3(EA_n)=n-1$.