论文标题

通过聚合优化的数据异质性和中毒攻击的强大联邦学习与数据异质性攻击

Robust Federated Learning against both Data Heterogeneity and Poisoning Attack via Aggregation Optimization

论文作者

Xie, Yueqi, Zhang, Weizhong, Pi, Renjie, Wu, Fangzhao, Chen, Qifeng, Xie, Xing, Kim, Sunghun

论文摘要

跨客户的非IID数据分布和中毒攻击是现实世界联合学习(FL)系统的两个主要挑战。尽管他们俩都通过开发的特定策略吸引了巨大的研究兴趣,但尚无已知解决方案在统一框架中对其进行解决。为了普遍克服这两个挑战,我们提出了SMARTFL,这是一种通用方法,该方法通过Subspace培训技术通过服务提供商本身收集的少量代理数据来优化服务器端的聚合过程。具体而言,使用服务器收集的代理数据优化了每个回合的每个参与客户的聚合权重,这实际上是客户端模型跨越的凸船体中全局模型的优化。由于在每个回合中,在服务器端优化的可调参数的数量等于参与端的客户次数(因此与模型大小无关),因此我们能够仅使用少量代理数据(例如,大约一百个样本)训练具有大量参数的全局模型。通过优化的聚合,SMARTFL确保对异质和恶意客户的鲁棒性,这在可能发生或两个问题的现实世界中是可取的。我们提供了SMARTFL的收敛性和概括能力的理论分析。从经验上讲,SMARTFL通过非IID数据分发以及与恶意客户的FL一起在FL上实现最先进的性能。源代码将发布。

Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning (FL) systems. While both of them have attracted great research interest with specific strategies developed, no known solution manages to address them in a unified framework. To universally overcome both challenges, we propose SmartFL, a generic approach that optimizes the server-side aggregation process with a small amount of proxy data collected by the service provider itself via a subspace training technique. Specifically, the aggregation weight of each participating client at each round is optimized using the server-collected proxy data, which is essentially the optimization of the global model in the convex hull spanned by client models. Since at each round, the number of tunable parameters optimized on the server side equals the number of participating clients (thus independent of the model size), we are able to train a global model with massive parameters using only a small amount of proxy data (e.g., around one hundred samples). With optimized aggregation, SmartFL ensures robustness against both heterogeneous and malicious clients, which is desirable in real-world FL where either or both problems may occur. We provide theoretical analyses of the convergence and generalization capacity for SmartFL. Empirically, SmartFL achieves state-of-the-art performance on both FL with non-IID data distribution and FL with malicious clients. The source code will be released.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源