论文标题
黑洞辐射解码是量子密码学
Black-Hole Radiation Decoding is Quantum Cryptography
论文作者
论文摘要
我们建议研究高能物理学中现象与标准加密原始原料的存在之间的等价关系,并展示了这样的等效性保持的第一个示例。少数先前的作品表明,高能现象可以通过加密硬度来解释。示例包括使用单向功能的存在来解释解码黑孔鹰辐射的硬度(Harlow and Hayden 2013,Aaronson 2016),并使用伪量子量子态来解释计算ADS/CFT词典的硬度(Bouland,Fefferland,Fefferman和Vazirani,2020年)。 在这项工作中,我们显示了前一个黑孔辐射解码的例子,它也意味着存在安全的量子密码学。实际上,我们显示了黑洞辐射解码的硬度与多种加密原语之间的存在等效性,包括比特承诺方案和忽略的转移协议(使用量子通信)。可以将其视为(正如我们讨论的那样,有适当的免责声明)为存在的安全密码学提供了物理上的理由。我们猜想可以在其他高能物理现象中找到这种连接。
We propose to study equivalence relations between phenomena in high-energy physics and the existence of standard cryptographic primitives, and show the first example where such an equivalence holds. A small number of prior works showed that high-energy phenomena can be explained by cryptographic hardness. Examples include using the existence of one-way functions to explain the hardness of decoding black-hole Hawking radiation (Harlow and Hayden 2013, Aaronson 2016), and using pseudorandom quantum states to explain the hardness of computing AdS/CFT dictionary (Bouland, Fefferman and Vazirani, 2020). In this work we show, for the former example of black-hole radiation decoding, that it also implies the existence of secure quantum cryptography. In fact, we show an existential equivalence between the hardness of black-hole radiation decoding and a variety of cryptographic primitives, including bit-commitment schemes and oblivious transfer protocols (using quantum communication). This can be viewed (with proper disclaimers, as we discuss) as providing a physical justification for the existence of secure cryptography. We conjecture that such connections may be found in other high-energy physics phenomena.