论文标题
光学晶格中人口损害的典型凝结物的周期性动力学
Periodic dynamics of population-imbalanced fermionic condensates in optical lattices
论文作者
论文摘要
我们研究了被困在光学晶格中的人口损害两种物种的费米子系统的动力学。这里配对的费米子可以在存在外部磁场的情况下通过Feshbach耦合形成骨气分子。结果表明,冷凝水部分的自然波动是周期性的,超出了feshbach阈值。低于此阈值值,冷凝水部分根本没有振荡。振荡频率与引导曲线本质上是线性的。该线的斜率和截距显示出有关系统中存在的不平衡量以及外来相位的动量空间结构的重要信息。
We investigate the dynamics of a population-imbalanced two-species fermionic system trapped in an optical lattice. The paired fermions here can form bosonic molecules via Feshbach coupling in the presence of an external magnetic field. It is shown that the natural fluctuations of the condensate fraction are periodic beyond a threshold Feshbach detuning; and below this threshold value, the condensate fraction shows no oscillation at all. The oscillation frequency vs. detuning curve is linear in nature. The slope and intercept of this line are shown to carry important information about the amount of imbalance present in the system, and the momentum space structure of the exotic phases.