论文标题
多代理合同
Multi-Agent Contracts
论文作者
论文摘要
我们研究了一个自然的组合单一授权多代理合同设计问题,其中校长会激发一组代理团队为给定的任务付出努力。我们模型的核心是奖励功能,它将代理商的努力映射为校长的预期奖励。我们试图设计计算有效的算法,以查找属于无补体层次结构的奖励功能的最佳(或近乎最佳)线性合同。 我们的第一个主要结果给出了分别具有价值和需求甲壳的恒定因素近似算法和XOS奖励函数。它依赖于非常规的``价格''和(近似)需求查询来选择本金应与之签约的代理集,并利用XOS功能及其边际的新颖性属性,这可能是独立的利益。 我们的第二个主要结果是对于具有$ n $代理和亚基奖励功能的设置的$ω(\ sqrt {n})$即使有需求Oracle访问。这种不可能的一个惊人特征是它适用于接近子模型的恒定因素的亚addive函数。这与以前的文献有关,例如组合拍卖。
We study a natural combinatorial single-principal multi-agent contract design problem, in which a principal motivates a team of agents to exert effort toward a given task. At the heart of our model is a reward function, which maps the agent efforts to an expected reward of the principal. We seek to design computationally efficient algorithms for finding optimal (or near-optimal) linear contracts for reward functions that belong to the complement-free hierarchy. Our first main result gives constant-factor approximation algorithms for submodular and XOS reward functions, with value and demand oracles, respectively. It relies on an unconventional use of ``prices'' and (approximate) demand queries for selecting the set of agents that the principal should contract with, and exploits a novel scaling property of XOS functions and their marginals, which may be of independent interest. Our second main result is an $Ω(\sqrt{n})$ impossibility for settings with $n$ agents and subadditive reward functions, even with demand oracle access. A striking feature of this impossibility is that it applies to subadditive functions that are constant-factor close to submodular. This presents a surprising departure from previous literature, e.g., on combinatorial auctions.