论文标题
快速预测具有先验信息的复发神经网络的模式锁定光纤激光器的复杂非线性动力学
Fast predicting the complex nonlinear dynamics of mode-locked fiber laser by a recurrent neural network with prior information feeding
论文作者
论文摘要
作为研究飞秒激光器内部机制的急需方法,传统的飞秒激光建模依赖于拆分式傅立叶方法(SSFM),以迭代解决具有大型计算复杂性的非线性Schrodinger方程。为了实现飞秒激光器的逆设计和优化,需要进一步强调大量计算复杂性引起的耗时的问题,以进一步强调了具有不同空腔设置的模式的纤维激光器。在这里,提出了一个经常性的神经网络,该网络首次实现快速而准确的飞秒模式锁定纤维激光器建模。通过我们提出的先验信息喂养方法实现了对不同空腔设置的概括。随着GPU的加速,推断500往返的人工智能(AI)模型的平均时间小于0.1 s。即使在相同的基于CPU的硬件平台上,AI模型仍然比SSFM方法快6倍。提出的支持AI的方法有望成为飞秒激光建模的标准方法。
As an imperative method of investigating the internal mechanism of femtosecond lasers, traditional femtosecond laser modeling relies on the split-step Fourier method (SSFM) to iteratively resolve the nonlinear Schrodinger equation suffering from the large computation complexity. To realize inverse design and optimization of femtosecond lasers, numerous simulations of mode-locked fiber lasers with different cavity settings are required further highlighting the time-consuming problem induced by the large computation complexity. Here, a recurrent neural network is proposed to realize fast and accurate femtosecond mode-locked fiber laser modeling for the first time. The generalization over different cavity settings is achieved via our proposed prior information feeding method. With the acceleration of GPU, the mean time of the artificial intelligence (AI) model inferring 500 roundtrips is less than 0.1 s. Even on an identical CPU-based hardware platform, the AI model is still 6 times faster than the SSFM method. The proposed AI-enabled method is promising to become a standard approach to femtosecond laser modeling.