论文标题
泰特·夏法维奇小组和代数
Tate-Shafarevich groups and algebras
论文作者
论文摘要
Takashi ono定义的G组的Tate-Shafarevich集合G是有限的,而G伯恩赛德引入了G的外部阶级保护自动形态。我们考虑了这个重要组理论对象的谎言代数和联想代数的类似物,并建立了一些新的结构属性。我们还讨论了对其他代数结构的开放问题和最终概括。
The Tate-Shafarevich set of a group G defined by Takashi Ono coincides, in the case where G is finite, with the group of outer class-preserving automorphisms of G introduced by Burnside. We consider analogues of this important group-theoretic object for Lie algebras and associative algebras and establish some new structure properties thereof. We also discuss open problems and eventual generalizations to other algebraic structures.