论文标题

部分可观测时空混沌系统的无模型预测

Sharp embedding between Wiener amalgam and some classical spaces

论文作者

Lu, Yufeng

论文摘要

We establish the sharp conditions for the embedding between Wiener amalgam spaces $W_{p,q}^s$ and some classical spaces, including Sobolev spaces $L^{s,r}$, local Hardy spaces $h_{r}$, Besov spaces $B_{p,q}^s$, which partially improve and extend the main result obtained by Guo et al.在J.功能中。肛门,273(1):404-443,2017。此外,我们给出了Wiener amalgam空间之间包含的全部表征,$ w_ {p,q}^s $和$α$ - 调整空间$ m_ {尤其是在$α= 0 $的情况下,使用$ m_ {p,q}^{s,α} = m_ {p,q}^s $,我们给出了这些嵌入的最一般情况的鲜明情况。当$ 0 <p \ leqslant 1 $时,我们还建立了Wiener Amalgam空间和Triebel Spaces $ f_ {p,r}^{s} $之间的尖锐嵌入。

We establish the sharp conditions for the embedding between Wiener amalgam spaces $W_{p,q}^s$ and some classical spaces, including Sobolev spaces $L^{s,r}$, local Hardy spaces $h_{r}$, Besov spaces $B_{p,q}^s$, which partially improve and extend the main result obtained by Guo et al. in J. Funct. Anal., 273(1):404-443, 2017. In addition, we give the full characterization of inclusion between Wiener amalgam spaces $W_{p,q}^s$ and $α$-modulation spaces $M_{p,q}^{s,α}$. Especially, in the case of $α=0$ with $M_{p,q}^{s,α} = M_{p,q}^s$, we give the sharp conditions of the most general case of these embedding. When $0<p\leqslant 1$, we also establish the sharp embedding between Wiener amalgam spaces and Triebel spaces $F_{p,r}^{s}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源