论文标题
约瑟夫森旅行波参数放大器的基于X参数的设计和模拟量子计算应用程序
X-parameter based design and simulation of Josephson traveling-wave parametric amplifiers for quantum computing applications
论文作者
论文摘要
我们基于“量子适应的” X-Parameters,在存在损耗的电路组件的耗散的情况下,为通用的多端口非线性参数电路提供了一个有效,准确和全面的分析框架。我们将此方法应用于Josephson Traveling -Wave参数放大器(JTWPAS) - 超导和自旋量子量子量子计算体系结构中的关键组件 - 由于其数千个线性和非线性电路组件,这对于准确模型而言是具有挑战性的。 X参数是从经典非线性电路的谐波平衡解决方案产生的,然后映射到田间梯子操作员基础上,因此与每个多个相互作用模式相关的能量对应于光子占用率,而不是经典的功率波。提出并评估了两种不同的JTWPA设计的通用,多端口多频参数电路的量子效率的显式关系。增益和量子效率与从时间域溶液的傅立叶分析获得的增益和量子效率一致,但具有提高的准确性,速度以及包括现实世界障碍,统计变化,寄生效应和阻抗不匹配(内和外带)的能力。统一流在Keysight的Pathwave Advanced Design System(ADS)中实现,并在MIT作者的开源模拟代码Josephsoncircuits.jl中独立实现。
We present an efficient, accurate, and comprehensive analysis framework for generic, multi-port nonlinear parametric circuits, in the presence of dissipation from lossy circuit components, based on "quantum-adapted" X-parameters. We apply this method to Josephson traveling-wave parametric amplifiers (JTWPAs) - a key component in superconducting and spin qubit quantum computing architectures - which are challenging to model accurately due to their thousands of linear and nonlinear circuit components. X-parameters are generated from a harmonic balance solution of the classical nonlinear circuit and then mapped to the field ladder operator basis, so that the energy associated with each of the multiple interacting modes corresponds to photon occupancy, rather than classical power waves. Explicit relations for the quantum efficiency of a generic, multi-port, multi-frequency parametric circuit are presented and evaluated for two distinct JTWPA designs. The gain and quantum efficiency are consistent with those obtained from Fourier analysis of time-domain solutions, but with enhanced accuracy, speed, and the ability to include real-world impairments, statistical variations, parasitic effects, and impedance mismatches (in- and out-of-band) seamlessly. The unified flow is implemented in Keysight's PathWave Advanced Design System (ADS) and independently in an open-source simulation code, JosephsonCircuits.jl, from the MIT authors.