论文标题

在Kähler指标的空间中,带有$ t $ -Smorgemery的地球射线

Geodesic rays in the space of Kähler metrics with $T$-symmetry

论文作者

Leung, Naichung Conan, Wang, Dan

论文摘要

令$(m,ω,j)$为kähler歧管,配备有效的汉密尔顿圆环动作$ρ:t \ rightarrow \ mathrm {diff}(m,m,ω,j)$ by Isometries,MOMM MAM MAP $μ:m \ rightArrow \ rightarrow \ rightarrow \ rightarrow \ mathfrak \ mathfrak {我们首先在$ m $上构造了一个单数混合极化$ \ mathcal {p} _ {\ Mathrm {mathrm {mix}} $。其次,我们在$ m $上构建了一个与$ω$兼容的复杂结构的单参数家族$ j_ {t} $。此外,当$ m $紧凑时,相应的kähler指标$ g_ {t} $的路径是$ m $ $ m $的完整地理射线。最后,我们证明了Kähler极化的相应家族$ \ MATHCAL {p} _ {t} $与$ j_ {t} $关联到$ \ Mathcal {p} _ {\ Mathrm {mathrm {mix}} $ as $ t \ rightarrow \ rightarrow \ infty \ infty \ infty $ \ rightcal {p}

Let $(M, ω, J)$ be a Kähler manifold, equipped with an effective Hamiltonian torus action $ρ: T \rightarrow \mathrm{Diff}(M, ω, J)$ by isometries with moment map $μ: M \rightarrow \mathfrak{t}^{*}$. We first construct a singular mixed polarization $\mathcal{P}_{\mathrm{mix}}$ on $M$. Second, we construct a one-parameter family of complex structures $J_{t}$ on $M$ which are compatible with $ω$. Furthermore, the path of corresponding Kähler metrics $g_{t}$ is a complete geodesic ray in the space of Kähler metrics of $M$, when $M$ is compact. Finally, we show that the corresponding family of Kähler polarizations $\mathcal{P}_{t}$ associated to $J_{t}$ converges to $\mathcal{P}_{\mathrm{mix}}$ as $t \rightarrow \infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源