论文标题
Netlogo中的确定性随机步行模型和随机图中不对称饱和时间的识别
Deterministic Random Walk Model in NetLogo and the Identification of Asymmetric Saturation Time in Random Graph
论文作者
论文摘要
互动编程环境是促进创新网络思维,教授复杂性科学以及探索新兴现象的强大工具。本文报告了我们最近在Netlogo中开发确定性随机步行模型的发展,Netlogo是一个用于计算思维,生态系统思维和多代理跨平台编程环境的领先平台。确定性随机步行是建模复杂网络上动态过程的基础。受Netlogo中提供的时间可视化的启发,我们研究了确定性随机步行模型的网络拓扑与扩散饱和时间之间的关系。我们的分析发现,在Erdős-rényi图中,饱和时间表现出不对称的模式,可能发生的可能性很大。当轮毂定义为具有相对较高数量连接的节点时,就会发生这种行为。然而,我们的分析得出的是,巴拉巴西 - 阿尔伯特模型中的枢纽稳定了确定性随机步行模型的收敛时间。这些发现强烈表明,取决于在复杂网络上运行的动态过程,需要考虑将节点视为集线器以外的程度以外的其他特征。我们已将开发项目提供给公众,请在https://github.com/bravandi/netlogo-dynamical-processes上免费提供。
Interactive programming environments are powerful tools for promoting innovative network thinking, teaching science of complexity, and exploring emergent phenomena. This paper reports on our recent development of the deterministic random walk model in NetLogo, a leading platform for computational thinking, eco-system thinking, and multi-agent cross-platform programming environment. The deterministic random walk is foundational to modeling dynamical processes on complex networks. Inspired by the temporal visualizations offered in NetLogo, we investigated the relationship between network topology and diffusion saturation time for the deterministic random walk model. Our analysis uncovers that in Erdős-Rényi graphs, the saturation time exhibits an asymmetric pattern with a considerable probability of occurrence. This behavior occurs when the hubs, defined as nodes with relatively higher number of connections, emerge in Erdős-Rényi graphs. Yet, our analysis yields that the hubs in Barabási-Albert model stabilize the the convergence time of the deterministic random walk model. These findings strongly suggest that depending on the dynamical process running on complex networks, complementing characteristics other than the degree need to be taken into account for considering a node as a hub. We have made our development open-source, available to the public at no cost at https://github.com/bravandi/NetLogo-Dynamical-Processes.