论文标题

使用经典阴影在连续变量状态断层扫描上的精确界限

Precision Bounds on Continuous-Variable State Tomography using Classical Shadows

论文作者

Gandhari, Srilekha, Albert, Victor V., Gerrits, Thomas, Taylor, Jacob M., Gullans, Michael J.

论文摘要

影子断层扫描是一个框架,用于使用称为经典阴影的随机测量库来构建量子状态的简洁描述,并采用强大的方法来绑定所使用的估计器。我们在经典的阴影框架中重塑了连续变量量子层析成像的现有实验协议,从而对从这些协议中估算密度矩阵所需的独立测量数量获得了严格的界限。我们分析了同源性,杂作,光子数(PNR)和光子 - 准则方案的效率。要达到$ n $ - photon密度矩阵的经典阴影的预期精确度,我们表明,同伴检测需要$ \ Mathcal {o}(n^{4+1/3})$测量值,而最坏的情况下是pnr和Phats-parity us的$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ wercal^o} (都可以进行对数校正)。我们根据数值模拟以及光学同源实验的实验数据进行基准测试。我们发现,数值和实验性的同伴断层扫描显着超过了我们的边界,表现出更典型的测量数量,即接近$ n $中的线性。我们将单模结果扩展到基于本地测量值的多模阴影的有效构造。

Shadow tomography is a framework for constructing succinct descriptions of quantum states using randomized measurement bases, called classical shadows, with powerful methods to bound the estimators used. We recast existing experimental protocols for continuous-variable quantum state tomography in the classical-shadow framework, obtaining rigorous bounds on the number of independent measurements needed for estimating density matrices from these protocols. We analyze the efficiency of homodyne, heterodyne, photon number resolving (PNR), and photon-parity protocols. To reach a desired precision on the classical shadow of an $N$-photon density matrix with a high probability, we show that homodyne detection requires an order $\mathcal{O}(N^{4+1/3})$ measurements in the worst case, whereas PNR and photon-parity detection require $\mathcal{O}(N^4)$ measurements in the worst case (both up to logarithmic corrections). We benchmark these results against numerical simulation as well as experimental data from optical homodyne experiments. We find that numerical and experimental homodyne tomography significantly outperforms our bounds, exhibiting a more typical scaling of the number of measurements that is close to linear in $N$. We extend our single-mode results to an efficient construction of multimode shadows based on local measurements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源