论文标题

与深度学习方法的二元组和小组互动中感知的人格状态估计

Perceived personality state estimation in dyadic and small group interaction with deep learning methods

论文作者

Fenech, Kristian, Fodor, Ádám, Bergeron, Sean P., Saboundji, Rachid R., Oertel, Catharine, Lőrincz, András

论文摘要

二元组和小组合作是一种进化的有利行为,这种合作的需求是日常生活中的定期发生。在本文中,我们估计了二元组和小组中个人在四个多模式数据集上的相互作用上的人格特征。我们发现,基于变压器的预测模型的性能类似于人类注释者,而人类注释者则是预测参与者的五五个人格特征。使用此模型,我们分析了在小组和二元组中执行任务的个人的估计感知人格特征。置换分析表明,在经历协作任务的小组中,小组成员集群的感知人格,在协作解决问题任务中的二元组也可以观察到这一点,但在非管理任务设置下的二元组中也没有观察到这一点。此外,我们发现,小组平均感知的人格特征比小组级别平均自我报告的人格特质提供了更好的小组绩效预测指标。

Dyadic and small group collaboration is an evolutionary advantageous behaviour and the need for such collaboration is a regular occurrence in day to day life. In this paper we estimate the perceived personality traits of individuals in dyadic and small groups over thin-slices of interaction on four multimodal datasets. We find that our transformer based predictive model performs similarly to human annotators tasked with predicting the perceived big-five personality traits of participants. Using this model we analyse the estimated perceived personality traits of individuals performing tasks in small groups and dyads. Permutation analysis shows that in the case of small groups undergoing collaborative tasks, the perceived personality of group members clusters, this is also observed for dyads in a collaborative problem solving task, but not in dyads under non-collaborative task settings. Additionally, we find that the group level average perceived personality traits provide a better predictor of group performance than the group level average self-reported personality traits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源