论文标题
从绝热不变性,山丘方程和最小动作原理分析的参数振荡器中的Riemann零
Riemann Zeroes from a Parametric Oscillator analyzed with Adiabatic Invariance, Hill Equation and the Least Action Principle
论文作者
论文摘要
绝热的不变性(ADI),山等形式主义(HEF)和最小动作原理(lap),这里分别应用于依赖于整数参数lambda的一维参数振荡器的理论物理学的三种相关工具。该振荡器受到扰动的影响,这是Riemann Zeta函数模量(RZF)乘以振荡功能的功能,期望可以在临界条中获得(i)在临界条中获得(i)在临界条中获得振动器ADI(ii)通过评估II相关的(ii)II II II(ii)在临界条中获得的(II),II(ii)ii oscillator等式(II)扰动的振荡器。在应用ADI形式主义时,首先获得了参数lambda的最佳值,我们发现三种形式主义确实导致参数振荡器状态在关键线上以任意有限的间隔给予RZF零。后来,参数lambda被用随机数量lambda(Sigma)替换为双素数,实际上定义了不同Lagrangian的无限扰动振荡器。尽管如此,当将膝盖施加到这些振荡器上时,尽管两种复杂的平面坐标在关键条中同时变化,但仍将这些riemann ZeroE在临界线处得到。
Adiabatic Invariance (AdI), Hill Equation formalism (HEF), and the Least Action Principle (LAP), three relevant tools of theoretical physics are here separately applied to a one-dimensional parametric oscillator of time-variable frequency that depends on an integer parameter Lambda. This oscillator is subjected to a perturbation which is a functional of the modulus of Riemann Zeta Function (RZF) times an oscillatory function, expecting that nontrivial zeroes could be obtained, in the critical strip, either (i) by optimizing the oscillator AdI, (ii) verifying the Magnus-Winkler equation associated to the oscillator Hill equation, (iii) from evaluating the Action integral of the perturbed oscillator. The optimum value of parameter Lambda is firstly obtained when applying the AdI formalism, and we find that the three formalisms do lead to parametric oscillator states giving the RZF zeroes in arbitrary finite intervals on the critical line. The parameter Lambda is later replaced by a random integer-valued function Lambda(sigma) written in terms of twin primes, actually defining an infinite set of perturbed oscillators of different Lagrangian. Nonetheless, when applying the LAP to these oscillators we still get those Riemann zeroes at the critical line, in spite of both complex plane coordinates varying simultaneously in the critical strip.