论文标题

Lebesgue可衡量的增益III:开放式Riemann表面

Concavity property of minimal $L^2$ integrals with Lebesgue measurable gain III: open Riemann surfaces

论文作者

Guan, Qi'an, Yuan, Zheng

论文摘要

在本文中,我们介绍了最小$ l^2 $积分的凹陷属性在开放式Riemann表面上有限点退化为线性的表征。作为一个应用程序,我们给出了最佳喷气机中平等的表征,从分析子集到打开Riemann表面,这是用于分析子集的Suta构想的加权Jets版本。

In this article, we present a characterization of the concavity property of minimal $L^2$ integrals degenerating to linearity in the case of finite points on open Riemann surfaces. As an application, we give a characterization of the holding of equality in optimal jets $L^2$ extension problem from analytic subsets to open Riemann surfaces, which is a weighted jets version of Suita conjecture for analytic subsets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源