论文标题

从二元分类模型中提取脑肿瘤ROI的全局扰动攻击

Optimized Global Perturbation Attacks For Brain Tumour ROI Extraction From Binary Classification Models

论文作者

Rajapaksa, Sajith, Khalvati, Farzad

论文摘要

深度学习技术极大地使计算机辅助诊断系统受益。但是,与其他领域不同,在医学成像中,由于手动注释和隐私法规的高成本,获得了大型细粒注释数据集(例如3D肿瘤分割),这具有挑战性。这使人们对弱点的方法进行了兴趣,以利用弱标记的数据进行肿瘤分割。在这项工作中,我们提出了一种弱监督的方法,以使用二进制类标签获得利益区域。此外,我们提出了一个新颖的目标函数,以基于预验证的二元分类模型来训练发电机模型。最后,我们将方法应用于MRI中的脑肿瘤分割问题。

Deep learning techniques have greatly benefited computer-aided diagnostic systems. However, unlike other fields, in medical imaging, acquiring large fine-grained annotated datasets such as 3D tumour segmentation is challenging due to the high cost of manual annotation and privacy regulations. This has given interest to weakly-supervise methods to utilize the weakly labelled data for tumour segmentation. In this work, we propose a weakly supervised approach to obtain regions of interest using binary class labels. Furthermore, we propose a novel objective function to train the generator model based on a pretrained binary classification model. Finally, we apply our method to the brain tumour segmentation problem in MRI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源