论文标题

Stardice I:传感器校准工作台和Sony IMX411传感器的绝对光度校准

StarDICE I: sensor calibration bench and absolute photometric calibration of a Sony IMX411 sensor

论文作者

Betoule, Marc, Antier, Sarah, Bertin, Emmanuel, Blanc, Pierre Éric, Bongard, Sébastien, Tanugi, Johann Cohen, Dagoret-Campagne, Sylvie, Feinstein, Fabrice, Hardin, Delphine, Juramy, Claire, Guillou, Laurent Le, Van Suu, Auguste Le, Moniez, Marc, Neveu, Jérémy, Nuss, Éric, Plez, Bertrand, Regnault, Nicolas, Sepulveda, Eduardo, Sommer, Kélian, Souverin, Thierry, Wang, Xiao Feng

论文摘要

型型超新星(SNE-IA)的哈勃图表对黑暗能量的性质提供了宇宙学的限制,其精度受到当前可用分光光度标准标准的通量校准的限制。标题实验旨在建立一个从NIST光电二极管到星星的5阶段计量链,其目标精度为\ si {1} {mmag},以$ griz $ colors。我们提供前两个阶段,从而导致从NIST光电二极管转移到演示\ Si {150} {Mpixel} CMOS传感器(由QHYCCD在Qhy411m摄像机中实现的Sony IMX411ALR)。作为副产品,我们提供了该相机的完整表征。建立了全自动分光光度测试台以执行校准转移。使用数千个平面图像研究了传感器读数电子设备,我们从中得出稳定性,高分辨率光子传输曲线以及单个像素增益的估计值。然后,将传感器量子效率相对于NIST校准的光电二极管进行测量。在16个不同的波长下,平面扫描用于构建传感器响应的地图。我们在\ si {0.001} {e^ - /γ}下方的量子效率上证明了统计不确定性。基准光学中的系统不确定性在\ si {1e-3} {e^ - /γ}的级别上受到控制。 QE曲线总体归一化的不确定性为1 \%。关于摄像机,我们在\ si {32.5} {ppm}的水平上证明了在稳态条件下的稳定性。响应中的同质性低于整个传感器区域的\ si {1} {\ persion} rms。在大多数可见范围内,量子效率保持在\ si {50} {\%}上方,在\ si {440} {440} {nm}和\ si {570} {Nm}之间的峰值上方峰值高于\ si {80} {\ person}。检测到\ si {1} {\%}级别的差异性非线性。提出了一个简单的2参数模型来减轻效果。

The Hubble diagram of type-Ia supernovae (SNe-Ia) provides cosmological constraints on the nature of dark energy with an accuracy limited by the flux calibration of currently available spectrophotometric standards. The StarDICE experiment aims at establishing a 5-stage metrology chain from NIST photodiodes to stars, with a targeted accuracy of \SI{1}{mmag} in $griz$ colors. We present the first two stages, resulting in the calibration transfer from NIST photodiodes to a demonstration \SI{150}{Mpixel} CMOS sensor (Sony IMX411ALR as implemented in the QHY411M camera by QHYCCD). As a side-product, we provide full characterization of this camera. A fully automated spectrophotometric bench is built to perform the calibration transfer. The sensor readout electronics is studied using thousands of flat-field images from which we derive stability, high resolution photon transfer curves and estimates of the individual pixel gain. The sensor quantum efficiency is then measured relative to a NIST-calibrated photodiode. Flat-field scans at 16 different wavelengths are used to build maps of the sensor response. We demonstrate statistical uncertainty on quantum efficiency below \SI{0.001}{e^-/γ} between \SI{387}{nm} and \SI{950}{nm}. Systematic uncertainties in the bench optics are controlled at the level of \SI{1e-3}{e^-/γ}. Uncertainty in the overall normalization of the QE curve is 1\%. Regarding the camera we demonstrate stability in steady state conditions at the level of \SI{32.5}{ppm}. Homogeneity in the response is below \SI{1}{\percent} RMS across the entire sensor area. Quantum efficiency stays above \SI{50}{\percent} in most of the visible range, peaking well above \SI{80}{\percent} between \SI{440}{nm} and \SI{570}{nm}. Differential non-linearities at the level of \SI{1}{\percent} are detected. A simple 2-parameter model is proposed to mitigate the effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源