论文标题
在配合crt地图上的内部DLA
Internal DLA on mated-CRT maps
论文作者
论文摘要
我们证明了在Mated-Crt图上的内部扩散限制聚集的形状定理,这是一个随机平面图的家族,该家族近似Liouville量子重力(LQG)表面。极限是一个LQG谐波球,我们在同伴纸上构建。我们还证明了可分裂的沙珀的类似结果。
We prove a shape theorem for internal diffusion limited aggregation on mated-CRT maps, a family of random planar maps which approximate Liouville quantum gravity (LQG) surfaces. The limit is an LQG harmonic ball, which we constructed in a companion paper. We also prove an analogous result for the divisible sandpile.