论文标题

在非磁性分子连接中,手性诱导的自旋选择性起源的群体理论方法

A group-theoretic approach to the origin of chirality-induced spin selectivity in non-magnetic molecular junctions

论文作者

Dednam, W., García-Blázquez, M. A., Zotti, Linda A., Lombardi, E. B., Sabater, C., Pakdel, S., Palacios, J. J.

论文摘要

自旋轨道耦合在非磁性系统中产生了一系列自旋式互转换现象,在这些系统中,某些空间对称性被降低或不存在。手性诱导的自旋选择性(CISS)通常是指在非磁性手性系统中旋转依赖性电子转移的术语,就是一种情况,在各种看似无关的情况下出现,范围从无机材料到分子设备。特别是,分子连接中CISS的起源是激烈的当前辩论的问题。在这里,我们得出了一组几何条件,以表明这种效果的出现,暗示了对称性超出其他相关定量问题的基本作用。我们的方法利用了在散射形式主义中使用点组对称性进行运输的方法,表明电极的对称性与分子的出现在旋转偏振的出现时一样重要,并且扩展了可能的CISS外观。事实证明,当引入相对旋转的相对旋转时,独立的金属纳米角色可以表现出自旋偏振。作为推论,只要整个连接都以特定的方式是手性的,则具有$ \ textbf {achiral} $分子的分子连接也可以表现出自旋极化。这种形式主义还允许预测自旋极化在与其对映体伴侣交界处取代时自旋偏振的定性变化。基于密度功能理论的量子传输计算证实了我们的所有预测,并在单粒子框架内提供了进一步的定量见解。

Spin-orbit coupling gives rise to a range of spin-charge interconversion phenomena in non-magnetic systems where certain spatial symmetries are reduced or absent. Chirality-induced spin selectivity (CISS), a term that generically refers to a spin-dependent electron transfer in non-magnetic chiral systems, is one such case, appearing in a variety of seemingly unrelated situations ranging from inorganic materials to molecular devices. In particular, the origin of CISS in molecular junctions is a matter of an intense current debate. Here we derive a set of geometrical conditions for this effect to appear, hinting at the fundamental role of symmetries beyond otherwise relevant quantitative issues. Our approach, which draws on the use of point-group symmetries within the scattering formalism for transport, shows that electrode symmetries are as important as those of the molecule when it comes to the emergence of a spin-polarization and, by extension, to the possible appearance of CISS. It turns out that standalone metallic nanocontacts can exhibit spin-polarization when relative rotations which reduce the symmetry are introduced. As a corollary, molecular junctions with $\textbf{achiral}$ molecules can also exhibit spin-polarization along the direction of transport, provided that the whole junction is chiral in a specific way. This formalism also allows the prediction of qualitative changes of the spin-polarization upon substitution of a chiral molecule in the junction with its enantiomeric partner. Quantum transport calculations based on density functional theory corroborate all of our predictions and provide further quantitative insight within the single-particle framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源