论文标题
相对论量子力学的经典和量子重力
Classical and quantum gravity from relativistic quantum mechanics
论文作者
论文摘要
普遍的做法是通过庞加莱群体的不可还原统一表示来描述基本粒子。以同样的方式,可以通过庞加莱集团的不可还原统一表示来描述多粒子系统。庞加莱群的表示的特征是两个Casimir操作员的固定特征值,与固定质量和固定角动量相对应。在多粒子系统(大量无旋转颗粒)中,固定这些特征值会导致颗粒之间的相关性。在大量量子数的准经典近似中,这些相关性呈现出由保形引力的场方程描述的引力相互作用的结构。计算相应重力常数的理论值。它与一般相对性的字段方程中使用的经验价值一致。
It is common practice to describe elementary particles by irreducible unitary representations of the Poincaré group. In the same way, multi-particle systems can be described by irreducible unitary representations of the Poincaré group. Representations of the Poincaré group are characterised by fixed eigenvalues of two Casimir operators corresponding to a fixed mass and a fixed angular momentum. In multi-particle systems (of massive spinless particles), fixing these eigenvalues leads to correlations between the particles. In the quasi-classical approximation of large quantum numbers, these correlations take on the structure of a gravitational interaction described by the field equations of conformal gravity. A theoretical value of the corresponding gravitational constant is calculated. It agrees with the empirical value used in the field equations of general relativity.