论文标题

liouville量子重力度量的Minkowski内容度量

The Minkowski content measure for the Liouville quantum gravity metric

论文作者

Gwynne, Ewain, Sung, Jinwoo

论文摘要

liouville量子重力(LQG)表面是自然的随机二维表面,最初是作为随机测量空间配制的,后来作为随机度量空间。我们表明,LQG度量可以作为Minkowski量度相对于LQG度量的措施回收,回答了Gwynne和Miller的问题(Arxiv:1905.00383)。结果,我们证明了$γ$ -LQG表面的度量结构决定了其(0,2)$中每个$γ\的共形结构。我们的主要工具是用于空间填充SLE的连续交配理论。在证明的过程中,我们还建立了相对于LQG度量的空间填充SLE的Hölder连续性结果。

A Liouville quantum gravity (LQG) surface is a natural random two-dimensional surface, initially formulated as a random measure space and later as a random metric space. We show that the LQG measure can be recovered as the Minkowski measure with respect to the LQG metric, answering a question of Gwynne and Miller (arXiv:1905.00383). As a consequence, we prove that the metric structure of a $γ$-LQG surface determines its conformal structure for every $γ\in (0,2)$. Our primary tool is the continuum mating-of-trees theory for space-filling SLE. In the course of our proof, we also establish a Hölder continuity result for space-filling SLE with respect to the LQG metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源