论文标题

FF2:一个功能融合二流框架用于标点符号修复

FF2: A Feature Fusion Two-Stream Framework for Punctuation Restoration

论文作者

Wu, Yangjun, Fang, Kebin, Zhao, Yao, Zhang, Hao, Shi, Lifeng, Zhang, Mengqi

论文摘要

为了完成标点符号修复,大多数现有方法都致力于引入额外的信息(例如,言论部分)或解决类不平衡问题。最近,基于大规模变压器的预训练的语言模型(PLM)已被广泛利用,并获得了巨大的成功。但是,PLM在具有标记的大数据集上进行了训练,这可能与没有标记的小数据集不太吻合,从而导致收敛并不理想。在这项研究中,我们提出了一个特征融合两流框架(FF2)来弥合差距。具体而言,一个流利用了预训练的语言模型来捕获语义功能,而另一个辅助模块捕获了手头的功能。我们还修改了多头注意的计算,以鼓励头部之间的交流。然后,将两个具有不同观点的功能汇总为融合信息并增强上下文意识。没有其他数据,对流行基准IWSLT的实验结果表明,FF2实现了新的SOTA性能,这证明了我们的方法有效。

To accomplish punctuation restoration, most existing methods focus on introducing extra information (e.g., part-of-speech) or addressing the class imbalance problem. Recently, large-scale transformer-based pre-trained language models (PLMS) have been utilized widely and obtained remarkable success. However, the PLMS are trained on the large dataset with marks, which may not fit well with the small dataset without marks, causing the convergence to be not ideal. In this study, we propose a Feature Fusion two-stream framework (FF2) to bridge the gap. Specifically, one stream leverages a pre-trained language model to capture the semantic feature, while another auxiliary module captures the feature at hand. We also modify the computation of multi-head attention to encourage communication among heads. Then, two features with different perspectives are aggregated to fuse information and enhance context awareness. Without additional data, the experimental results on the popular benchmark IWSLT demonstrate that FF2 achieves new SOTA performance, which verifies that our approach is effective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源